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1 Introduction

Hearing impairment remains the primary disability among military person-
nel. Sound pressure levels caused by proximity to aircraft engines or impulse
noise from large caliber weapons may easily exceed the pain threshold value
of 100 dB.

The focus of this project is to to develop a reliable numerical model for
investigating the bone-conducted sound in the human head. The problem
is difficult because of a lack of fundamental knowledge regarding the trans-
mission of acoustic energy through non-airborne pathways to the cochlea. A
fully coupled model based on the acoustic/elastic interaction problem with
a detailed resolution of the cochlea region and its interface with the skull
and the air pathways, should provide an insight into this fundamental, long
standing research problem.

The project builds on an interaction of experts in numerical wave prop-
agation - Drs. Elizabeth and Marek Bleszynski from Monopole Research
with a team at the University of Texas headed by Dr. Leszek Demkowicz
and including two experts on wave propagation and hearing science: Dr.
Mark Hamilton and Dr. Greg Champlin.

2 The Head Problem

In this section we review shortly specifics of the head problem. The prob-
lem falls into the category of general coupled elasticity/acoustics problems
discussed in Appendix A with a few minor modifications. The domain Q in
which the problem is defined is the interior of a ball including a model of
the human head, and it is split into an acoustic part f2a, and an elastic part
fe. Depending upon a particular example we shall study, the acoustic part
Qa includes:

"* air surrounding the human head, bounded by the head surface and a
truncating sphere; this part of the domain may include portions of air
ducts leading to the middle ear through mouth and nose openings;

"* cochlea,

" an additional layer of air bounded by the truncating sphere and the
outer sphere terminating the computational domain, where the equa-
tions of acoustics are replaced with the corresponding Perfectly Matched
Layer (PML) modification.
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The elastic part of the domain includes:

"* skull,

"* tissue.

By the term tissue we understand here all parts of the head that are not
occupied by the skull (bone) and the cochlea. This includes the thin layer of
the skin and the entire interior of the head with the brain. We will assume
that the elastic constants for the whole tissue domain are the same. As the
viscosity constant for the tissue is four orders of magnitude smaller than
that for the skull, an alternative approach would be to model the tissue as
an acoustical fluid, neglecting the shear waves in the brain.

The acoustic wave is represented as the sum of an incident wave pine

and a scattered wave p. Only the scattered wave is assumed to satisfy the
radiation (Sommerfeld) condition,

Op
a- + ikp E L 2 (i 3) (2.1)
ar

The different types of boundaries discussed in Appendix A reduce only to
the interface between the elastic and acoustic subdomains, and the outer
Dirichlet boundary for the acoustic domain. Material interfaces between
the skull and tissue, as well between the air and the PML air do not require
any special treatment.

The final formulation of the problem has the form A. 11, with the bilinear
and linear forms defined as follows.

bee(u, v) = j (EijkLUk,Lvij - psw.uivi) dx

bae(p, v) = j pn dS

bea(U, q) = -W 2Pf f unq dS
Jr 1I (2.2)

baa(p, q) = fa (VpVq - k2pq) dx
f 2a

le(v) = - PilncVn dS

la(q) = 0
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material E[MPa] I v I p[kg/ma Ic,[m/s] cs[m/s]]

tissue (brain) 0.67 0.48 1040 75 15
skull (bone) 6500 0.22 1412 2293 1374
cochlea (water) 1000 1500
air 1.2 344

Table 1: Material constants and speed of sound for compressional and shear
waves.

A symmetric formulation is enabled by dividing the equations of acoustics
with factor pfw 2 ,

b,,(u, v) = k (EijkIUk,IVij, -_ PqW 2Uivi) dx

bae(p,v) = f/ pvn dS

bea(U,q) = -/unqdS
iF1  (2.3)

b.. (p, q) = (VpVq - k2pq) dx

le(V) = - pincvn dS

1.(q) = 0

Notice that we refer to the outer normal unit vector n always locally, i.e.
in the formula for the coupling bilinear form bae involving elasticity test
functions v, versor n points outside of the elastic domain, whereas in the
formula for the coupling bilinear form ba involving acoustic test functions
q, versor n points outside of the acoustic domain. The normal components
Vn and un present in the coupling terms are thus opposite to each other, and
the formulation is indeed symmetric.

2.1 Material and temporar scales

The material data are summarized in Table 1. For elastic materials, the
speed of compressional waves and shear waves is given by the formulas:

2 E(1 - v) 2 E (2.4)
(1 + v)(1 - 2v)p' c 2( + v)p
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It is illuminating to begin with an estimate of the magnitude of all terms
entering the equations. There are three scales to the problem.

Element scale: h representing a typical element length. Assume h = 1 [cm]
= 10- 2 [m].

Elastic displacement in skull scale: b representing the expected magni-
tude of the acoustical displacements within the skull. Assuming the air
pressure at the level of 100[Pa = N/mi2 ] (threshold of pain), a simple
model of a pressure loaded elastic shell of thickness 1-2[cm] responds
with a displacement of order b = O.1[mm]= 10- 4 [m].

Pressure scale: po to be assumed.

The following table represents the order of magnitude of all terms entering
the formulation for the coupled problem involving the skull and the air only,
for an average frequency of f = 200[Hz].

elastic stiffness term = 1zb2h ;z- 1

elastic mass term = psw2b2h3 h 10

coupling term = pobh2  1 p (2.5)
1

acoustic stiffness term = p2h :z 10-lpo
W

2
pf

acoustic mass term = 1p2h3  o 14 p2
C2 pf 0

Assuming the pressure factor in the range of P0 ; 108, we observe that all
but one terms in the formulation vary by two-three orders of magnitudes
only. Notice that the assumed scales for displacement and pressure have
actually nothing to do with the expected displacement and pressure levels.
Assuming that displacements are of order 1 would yield the same result.
For convenience, we have also assumed the same order of magnitude for test
functions. Again, due to the linearity of the equations, the choice does not
matter. The five orders of magnitude difference for the elastic mass term
(the subwavelength regime) should not present a problem in double precision
computations.

In conclusion, the advantage of the coupled formulation "mixing" pri-
mary variables (elastic displacement) with dual variables (pressure), is the
possibility of adjusting the scaling to yield terms of the same order. The
scaling arguments have been confirmed by monitoring pivots reported by
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frontal solver when solving examples discussed in the next section. Indeed,
the pivots varied by the three-four orders of magnitude only.

2.2 PML modification

In the PML part of the acoustical domain, the bilinear form baa is modified
as follows:

b.. (p, q)z_ Op +z' ap aq + ' Op t9q r2 sindrdod
ba,) .PML (z-rr

2 6r r r 2 84 ib + r2 sin 2,0,ba 86)
(2.6)

Here r, 0, 6 denote the standard spherical coordinates and z = z(r) is the
PML stretching factor defined as follows,

Z(r) = (1-i [r-a )r (2.7)

Here a is the radius of the truncating sphere, b is the external radius of
the computational domain (b - a is thus the thickness of the PML layer), i
denotes the imaginary unit, k is the acoustical wave number, and r is the
radial coordinate. In computations, all derivatives with respect to spherical
coordinates are expressed in terms of the standard derivatives with respect
to Cartesian coordinates. In all reported computations, parameter a = 5.
For a detailed discussion on derivation of PML modifications and effects of
higher order discretizations see [9].

3 Numerical Examples

We refer to Appendix B for details on our finite element technology and to
Appendix C for a description of the parallel linear solver used in Phase I of
this project.

3.1 Verification

The code has been verified by implementing so-called manufactured solu-
tions. This is a standard technique in finite elements. We assume an ana-
lytical solution of any form (the manufactured solution), and use the differ-
ential equations for both acoustics and elasticity parts, boundary and inter-
face conditions, to compute the corresponding volume forces and boundary
fluxes. The verification is invaluable. By assuming a solution that can be
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(a) (b)

Figure 1: Verification of the code using a manufactured solution. Pressure
distribution along a section passing through the origin and parallel to the
x-axis for (a) unit sphere test, and (b) Example 1 with unit material data.
Numerical and exact (manufactured) solutions are indistinguishable.

reproduced exactly with the FE shape functions, we do know that the cor-
responding error must be equal to machine zero, in our case values around
10-14. Any values bigger than these, indicate a bug in the code. Values
around 10-7 indicate a loss of double precision. In our case, due to the use
of linear elements in the acoustic domain and linear or quadratic elements
in the elastic part, we can assume any linear variation for pressure, and
any linear(quadratic) variation for displacement vector. To verify the code,
we have used a simple example of domain consisting of a unit sphere, sur-
rounded with a unit layer of air, and a PML layer of thickness equal to two
units. The sphere was meshed with just eight octant tetrahedra, and the
air layer with 8 x 3 tetrahedra obtained by splitting eight prisms, each into
three tetrahedra. The PML layer was modeled with two layers of prismatic
elements with arbitrary order p _K 4 in the radial direction. All material
data were set to 0(1) values. A typical result of the verification for a mesh
with quadratic elements in the elastic domain, is shown in Fig. 1. The same
verification technique was then use to verify each data set and/or the three
different solvers used for the project: frontal solver, MUMPS, and the paral-
lel nested dissections multifrontal solver. For small data sets, an additional
verification is done by comparing results obtained with the different solvers.

3.2 Phase I Examples

Two numerical examples have been considered in the first phase of the
project.
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3.2.1 Scattering of a plane wave on an elastic, multilayer sphere

In this model, the domain consists of four concentric spheres. The most
inner sphere is filled with an elastic material with data corresponding to
human brain. The first layer is also elastic with constants corresponding
to human skull. The second layer corresponds to air, and the last one to
the PML air. The incident wave is assumed in the form of a plane wave
impinging from the top,

pinc = poe`ike.x, e = (0,0,-1), po = 1[Pa] (3.1)

The test problem is being solved with frequency f = 200 Hz. The precise
geometry data are as follows:

brain r <0.1 m
skull 0.1 m < r <.125 m
air 0.125 m < r < 0.2 m
PMLair 0.2 m<r<0.3m

Three tetrahedral meshes for the interior tissue ball, of radius 10cm ,were
generated using the simple MATLAB code distmesh, described in [6]. The
surface of this mesh was then manually extended to generate a skull annulus
of thickness 2.5cm, surrounding air of thickness 7.5cm, and a PML of thick-
ness 10cm. The problem was solved on three meshes shown in Figures 2, 3,
and 4. . We will refer to them as "small", "big", and "huge" meshes. For
all runs discussed for this example, we have used the MUMPS solver.

Fig. 5 displays the distribution of the real part of the pressure over plane
y = 0 passing through the origin. It looks "good". Unfortunately, a similar
picture for the imaginary part reveals a severe instability in the "tissue"
region. To double check the VTK graphics, we have displayed the results
across a vertical section passing through the origin. The results are shown
in Fig. 6. In order to access the problem, we have run the same example
but with the Young modulus for the tissue domain increased by two orders
of magnitude, i.e. E = 67 [MPa]. The corresponding results are shown in
Fig. 6. Figure 8 displays the same pressure in dB.

Figures 9 and 10 display the same pressure but this time obtained on
the big and huge meshes. The values are at the same level which indicates

a converged solution.
Finally, Figures 11 and 12 display the distribution of real and imaginary

parts of the pressure over the y = 0 section obtained on the big mesh.
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Figure 2: The "small" mesh used to solve the multilayer sphere problem.
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Figure 3: The "big" mesh used to solve the multilayer sphere problem.
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Figure 4: The "huge" mesh used to solve the multilayer sphere problem.
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Re (p)

0.00

0.00

-0.00

-0.00

Figure 5: The concentric spheres problem. Small mesh. Plot of real part of
pressure on plane y = 0 passing through origin.

SM3 "P) 21- - l P)

Figure 6: The concentric spheres problem. Small mesh. Plots of real and
imaginary part of pressure along the vertical section.

11



-) 6 ti6

-66 .16j . --~0.fl - . T I W 676 6'

Figure 7: The concentric spheres problem. Small mesh. Plots of real and
imaginary part of pressure along the vertical section for the case of a "stiffer"
tissue.
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Figure 8: The concentric spheres problem. Small mesh. Plot of pressure
along the vertical section in dB for the case of a "stiff" tissue.
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Figure 9: The concentric spheres problem. Big mesh. Plot of pressure along
the vertical section in dB for the case of a "stiff" tissue.
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Figure 10: The concentric spheres problem. Huge mesh. Plot of pressure
along the vertical section in dB for the case of a "stiff" tissue.
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Re (p)

Figure 11: The concentric spheres problem. Big mesh. Plot of real part of
pressure on plane y = 0 passing through origin.
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Im(p)

Figure 12: The concentric spheres problem. Big mesh. Plot of imaginary
part of pressure on plane y = 0 passing through origin.
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Figures 13 and 14 display the distribution of real and imaginary parts

of the pressure over the y = 0 section obtained on the big mesh rescaled to
values from -.00001 to .00001 for the real part, and from -.0001 to .0001 for

the imaginary part.

Re (p)

Figure 13: The concentric spheres problem. Big mesh. Plot of real part
of pressure on plane y = 0 passing through origin, in the range -. 00001 to
.00001.

The statistics for the largest mesh on which we have succesfully run the

code is as follows.

number of tets = 890144
number of tissue tets = 183872

number of skull tets = 353136
number of cochlea tets = 0 (3.2)

number of air tets = 353136

number of PML prisms = 16816
total number of d.o.f. = 430566
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Im(p)

Figure 14: The concentric spheres problem. Big mesh. Plot of imaginary
part of pressure on plane y = 0 passing through origin, in the range -.0001
to .0001.
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3.2.2 Scattering of a plane wave on a "head" with a cochlea

The analysis domains is divided into three subdomains as shown in Figure
15: cochlea, skull, and air. The skull is represented by a spherical shell,
and the cochlea is located inside the ear canal represented with a cylindrical
cavity. Except cochlea and skull, the remaining part of region within the
outer bounding sphere is classified as air. The cochlea is connected with the
skull by "growing" manually an additional bone structure in between the
skull and the cochlea, i.e. a number of air elements in the cavity is manually
reclassified as the skull elements.

air

S~cochlea

skull

Figure 15: The analysis domain of the human hearing system with three
materials: cochlea (yellow), skull (green) and air (blue).

The head is excited with the same plane wave as in the first example.
The purpose of this example was to investigate the proportion of the energy
transferred to the cochlea directly through air and indirectly through the
bone. It took several iterations to generate a FE mesh that captures geo-
metrical details of the cochlea, provides a nessary resolution to resolve the
wavelength scales in the "brain", and satifies mesh regularity criteria for the
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FE computations (sufficiently large jacobians). The statistics of the mesh is
as follows.

total number of elements = 955234
number of tets = 878314

number of tissue tets = 260800
number of skull tets = 304333 (3.3)

number of cochlea tets = 13168
number of air tets = 300013

total number of d.o.f. = 477961

A cross-section through the mesh and details of the meshes of the "ear
channel" and the cochlea model are shown in Figures 16, 17 and 18.

Figure 16: Mesh for the "cochlea problem".

Unfortunately, we have not managed to succesfully run the problem using
the MUMPS solver due to memory limitations (the interface with the parallel
solver has not been updated yet to quadratic elements).
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N/

Figure 17: The "cochlea problem". A detail of the mesh in the "ear channel"
around the model of cochlea.

Figure 18: The "cochlea problem". Mesh for the cochlea model.
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4 Results of Phase I

The following is a short summary of our accomplishments in Phase I of the
project.

1. We have developed a mathematical formulation for the coupled prob-
lem and the corresponding Galerkin approximation based on hybrid
tetrahedral/prismatic meshes.

2. We have developed from scratch a FE code to solve the coupled prob-
lem using linear and quadratic tetrahedral elements, and prisms of
variable order in the radial direction to handle the PML truncation
of the computational domain. The code includes: mesh generator,
element routines, an interface with VTK visualization package and in-
terfaces with three linear solvers: an in-house frontal solver, European
MUMPS, and a parallel solver. The code consists of over 30,000 lines,
excluding the solvers.

3. We have verified the code by using the method of manufactured solu-
tions and comparing results obtained with different solvers.

4. We have succesfully solved the concentric spheres problem for the case
of a "stiff tissue" and demonstrated a convergent solution by employing
three different meshes with an increasing number of d.o.f.

5. We have generated meshes for the cochlea problem but have not man-
aged to solve it.

6. We have generated meshes for the actual head problem that have been
used by the partners at Monopole.

5 Lessons learned from Phase I

Our initial plans were to use our existing three-dimensional hp-code based
on hexahedral meshes. The code has been in use for many years, and it
comes with the possibility of running various adaptive schemes to verify the
convergence. Unfortunately, generation of reasonably regular hexahedral
meshes for the problem of interest with our existing software, has turned
out to be unrealistic. We had to build a completely new code for tetrahedral
meshes from scratch.

A lesson learned from the concentric spheres problem is that we will need

higher order elements to cope with the large material contrast.
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Experience with the cochlea example indicates the need for a strict mon-
itoring of mesh quality. The scaling analysis indicates that the double pre-
cision should be sufficient for solving the problem with a direct multifrontal
solver. The encountered numerical singularity occurred in the region of
small elements surrounding the cochlea model and indicates a conditioning
problem most likely related to a local loss of shape regularity of generated
elements.
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Appendices

A Formulation of the Coupled Elasticity/Acoustics
Problem

In this opening section, we review the derivation of the variational formu-
lations for acoustics, elasticity and then for the ultimate coupled elastic-
ity/acoustics problem.

A.1 Linear Acoustics Equations

The classical linear acoustics equations are obtained by linearizing the isen-
tropic form of the compressible Euler equations expressed in terms of den-
sity p and velocity vector vi, around the hydrostatic equilibrium position
p = po, vi = 0. Perturbing the solution around the equilibrium position,

P=PO+ 6 p, vi=O+6vi,

and linearizing the Euler equations, see e.g. [8], we obtain a system of four
first order equations in terms of unknown perturbations of density Jp and
velocity 5vj, {(p),t + po(6vj)j = 0

po(Wv),t + (Op),k = 0,

with 5p denoting the perturbation in pressure. For the isentropic1 flow, the
pressure is simply an algebraic function of density,

p = p(p)

Linearization around the equilibrium position leads to the relation between
the perturbation in density and the corresponding perturbation in pressure

P = P(Po) +d-P(Po)6pSap
PO

'The entropy is assumed to be constant throughout the whole domain
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Here P0 is the hydrostatic pressure, and the derivative d (P0) is interpreted

a posteriori as the sound speed squared, and denoted by c2 . Consequently,
the perturbation in pressure and density are related by the simple linear
equation,

5p = c2 6p

It is customary to express the equations of linear acoustics in pressure rather
than density. Dropping deltas in the notation, we obtain,

c- 2 pt +Povj,j = 0

pov{,t +Pi =0

In this report, we shall consider only time-harmonic problems. Assuming
ansatz,

pAt' X) = e iwt p(x), ui(t, x) = e iWtUi (X)

we reduce the acoustics equations to,

c- 2iwp +PoVj,j =0

poiwvi +P,i = 0

or in the operator form,{c-2iwp +poV.v =0

poiwvi +Vp = 0 (A.1)

Eliminating the velocity, we obtain the Helmholtz equation for the pressure,

-Ap - k 2p = 0,

with the wave number k = w/c.
Having obtained the second order problem, we can proceed now with

the derivation of the weak formulation, as it is usually done in most of text
books on the subject. It is a little more iluminating to obtain the same
variational formulation starting with the first order system. First of all, we
make a clear choice in a way we treat the two equations. The equation of
continuity (conservation of mass) is going to be satisfied only in the weak
sense, i.e. we multiply it with a test function q, integrate over domain Q
and integrate the second term by parts to obtain,

- ( pq - povVq) dx + po j vnq dS = 0, Vq (A.2)
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Here vn = vjnj denotes the normal component of the velocity on the bound-
ary.

The second equation (conservation of momentum) is satisfied in the
strong sense, i.e. pointwise. Solving for the velocity, we get,

01W
v -. vp (A.3)

pozw

In particular, the normal component of the velocity is related to the normal
derivative of the pressure,

1 Op
- poiw On

At this point we introduce different boundary conditions:

"* a soft boundary FD,

P =PO

"* a hard boundary FN,
Vn -O

"• and an impedance condition with a constant d > 0,

vn = dp + vo

Multiplying Equation A.2 with iw, substituting the boundary data into the
boundary term, and eliminating the velocity in the domain integral term,
using formula A.3, we get the final variational formulation.

p p=po on F

jvpvq - (L)pq dx + iwpod pqdS = -j voqdS
c fJC N UrC

Vq : q=Oon D

(A.4)
We have obtained the weak formulation without introducing the second or-
der problem at all! We have a clear understanding which of the starting
equations is understood in the weak, and which in a strong sense. The
momentum equations, consistently with their pointwise interpretation, have
been extended to the boundary to yield the appropriate boundary condi-
tions. We mention only that all these considerations can be made more
precise by introducing the language of distributions and Sobolev spaces.
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A.2 Linear Elasticity

The time-harmonic linear elasticity equations include:

"* balance of momentum,

-P 2 Ui - 0'ij,j = fi

"* Cauchy displacement-strain relation,

fij i" (ui,j +} uj,i)

"* consititutive law,
ouij = Eijkl~kl

The tensor of elasticities satisfies the usual symmetry assumptions,

Eijkl = Ejikl, Eijkl = Eijtk, Eijkl = Eklij

In the case of an isotropic material,

Eiykl = •ik~jI + 6il~jk) + A3ij6kI

and the constitutive law reduces to the Hooke's law,
=rij = 2/iEij + AEkk3 ij

Utilizing the Cauchy geometric relations, we eliminate the strain tensor and
represent the stresses directly in terms of the displacement gradient,

aij = EijklUk,l (A.5)

or, for the Hooke's law,

cij = /lUi,j + AUk,kjij (A.6)

The momentum equations will be satisfied in the weak sense. We multiply
them with a test function vi, integrate over Q and integrate by parts to
obtain,

j (0ijvi,j - pW2 uivi) dx - j aijnjvi dS = j fivi dx, Vvi (A.7)

We introduce now the boundary conditions,
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"* prescribed displacements on ]D,

Ui = UiD

"* prescribed tractions on rN,

ti := aijnj gi

"* prescribed impedance on Fc,

ti + ,fiuj =i

We restrict ourselves now to vi = 0 on FD, substitute the boundary data
into the boundary term in Equation A.7, to obtain,

j(aijvij - pw'ujvi) dx + jf f3ijujvi dS =jfivi dx + j 9vi dS
C FNUrC

Vvi : vi = 0 on F D

The final variational formulation is obtained by substituting formula A.5 for
stresses,

f Ui= Ui'Don FD

f (Eijk1uk,1Vij - PW 2.iVi) dx + ijtjVi dS = fivi dx + j givi dS

Vvi : vi = 0 on rD

(A.8)
We record the final fomulas for the bilinear and linear forms.

X = H'(Q) := (Hi(Q))3

b(u, v) = j (EiJk1uk,Lvi,J - pw2 uivi) dx + j /ijujvi dS (A.9)

I(v) = r fivi dx + fr givi dS

A.3 Elasticity Coupled with Acoustics

Let f be a domain in R3. In the following discussion we shall assume that
the domain fŽ is bounded. We assume that Ql is split into two disjoint parts:
a subdomain Q, occupied by a linear elastic medium, and a subdomain Q'a
occupied by an acoustical fluid. The two subdomains are separated by an
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interface FI. Neither the subdomains nor the interface need to be connected
(they may consist of several separate pieces). The external boundary a2
will be partitioned into Dirichlet, Neumann and Cauchy parts: rD, EN, Fe,
respectively. Each of these boundary parts may consist of a part belonging
to the boundary &2, of the elastic subdomain, or the boundary O&2a of the
acoustical subdomain. Using a more precise mathematical language, Qe, Qa
are assumed to be opened and disjoint and,

S= Ti, U ? .

Similarly, elastic and acoustics parts of the Dirichlet boundary: FDe, FDa,
of the Neumann boundary: Fge, FNa, and the Cauchy boundary: Fc,, rCa,
are open submanifolds of 9Q and,

a9Q = r, U FrDa U Fge U FNa U Fee U rCa,

as well as,

OQ-, = FI U FDe U FNe UFe P a = FI U FDa U FNa U ICa •

A two-dimensional illustration of the scenario is shown in Figure 19.
The coupled problem involves solving linear elasticity equations dis-

cussed in Section A.2 satisfied in subdomain Qe coupled with the equations of
linear acoustics discussed in Section A. 1 and satisfied in subdomain Qa. The
unknowns include the components of the displacement vector ui (x), x E 9
and the acoustical pressure p(x), X E Ta. The two sets of equations are ac-
companied by appropriate boundary conditions and coupled by the following
interface conditions:

iwuini = vini - 1 xi ni, ti = aijnj = -- pni
pfzw axi

The first equation above expresses the continuity of normal component of
the velocity: the normal elastic velocity has to match the normal component
of the acoustical velocity. The second equation expresses the continuity of
stresses: the normal elastic stress must be equal to the (negative) pressure,
whereas the tangential component of the elastic stress vector is set to zero,
since the fluid does not support a shear stress. As usual, w is the angular
frequency, i is the imaginary unit, pf stands for the density of the fluid,
and ni denote components of a unit vector normal to interface F1 which we
will assume to be directed from the elastic into the acoustical subdomain.
Multiplying the first interface condition by pfiw, we get,

2 p
PfW2Un =T, ti = aijnj = -pni (A.10)
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Figure 19: Topology of a coupled problem

where u, = uini denotes the normal displacement. From the mathematical
point of view, the conditions of this type are classified as weak coupling
conditions. The word "weak" refers here to the fact that the primary variable
for elasticity - the displacement vector, matches the secondary variable (the
flux) for the acoustic problem - the normal velocity which is related to
the normal derivative of pressure. Conversely, the primary variable for the
acoustic problem - the pressure, defines the flux for the elasticity problem.
This "cross-coupling" is very essential in proving the well-posedness of the
problem, and stability of Galerkin approximations.

On top of the interface conditions we have the usual boundary conditions
for acoustics,

* prescribed pressure on rDa,

P = PD
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"* prescribed normal velocity on rNa,

Vn = VO

"* an impedance condition with an impedance constant d > 0 on Fca,

v, = dp + vo

and for the elasticity,

"• prescribed displacements on FDe,

Ui = Ui,D

"* prescribed tractions on FN,

ti := orijnj =gi

"* prescribed impedance on FcJ,

ti + iwOf3ijuj gi

We proceed now with the derivation of the variational formulation. We
start with the weak form of the continuity equation for acoustics,

[o ( i-wpq - pf vVq) dx + Pf fan. vnq dS = 0, Vq

and the weak form of the conservation of momentum for elasticity,

f (aijvi,j - psW
2

Uivi) dx - j cijnjvi dS =j fivi dx, Vvi

with p, and fi denoting the density of solid and body forces, respectively.
Boundary Of2a of the acoustic subdomain is now split into the interface FN

and parts rDa, FNa, ]Ca. For the interface FI, we use the first interface
condition to replace the flux term pfvn with iwpf U, and proceed in the
standard way with the acoustic boundary conditions, to obtain the varia-
tional statement,

P=PD°nFD1 Da

-fipq + Ip~q dx + pfd pq dS + iwpfu, q dS = pfvoq dS,

in. ( V2 p dL + Ca I = NaUFCa

Vq :q=0onFDa
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Similarly, boundary (9Qe of the elastic subdomain is split into the interface
FN and parts rDe, FNe, rCe. For the interface FI, we use the second interface
condition to replace the flux term oijnj with -pni, and use the boundary
conditions to obtain the variational statement,

U = UD onFD

(EijklUk,lVi~j - psW 
2 UiVi) dx + iw fj Oijujvi dS + j pvn dS = fivi dx + j givi dS,

Vv : v =0 onD

Multiplying the variational statement for acoustics by factor iw, we get the
final variational formulation for the coupled problem in the form,

{ U E UD + V, E PD + -V,

bec(u, v) + bae(p, v) = le(V), Vv E V (A.11)

bea(u,q) + baa(p,q) = Ia(q), Vq E V

where:

" the bilinear and linear forms are given by the formulas:

bee(u, v) = j (EijkIUk,IVij - Psw 2 uivi) dx + iw fr Oijujvi dS

ba..(p, v) = pvn dS

bea(U, q) = -w 2P1 j unq dS

baa(p, q) = Jl (VpVq - k2 pq) dx + iw fr pfd pq dS

le (v) = jfl fivi dx + jr~uc gjvj dS

la(q) = iwpf iNaUICa voq dS,

(A.12)

" iLD E Hl(C,) := (H' (ne))3 is a finite energy lift of displacements UD

prescribed on FDe, P-D E H'(Qa) is a finite enery lift of pressure PD

prescribed on FDa,

" V and V are the spaces of the test functions,

V = {v E H1 (Q,) : v= 0 on rDe}
(A.13)

V = {qH c U(Qa) : q= 0 on FD.}
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a k = w/c is the acoustic wave number.

Coupled problem A.11 is symmetric if and only if diagonal forms bee and
baa are symmetric and,

bae(p, U) = bea(U, p)

Thus, in order to enable the symmetry of the formulation2 , we need to rescale
problem by, for instance, dividing the second equation by factor -w 2pf.

B Finite Element Discretization and Implementa-
tion Details

Except for the PML domain, both acoustic and elastic domains are dis-
cretized with the simplest linear tetrahedra, i.e. pressure p and elastic dis-
placement components ui are linear within each element. This implies that
all interfaces including the truncating sphere are approximated with plane
triangular panels. The triangular mesh on the (approximate) truncating
sphere is extended in the radial direction to form two layers of prismatic
elements. In order to approximate well the PML induced layer, higher order
polynomials in the radial direction are used, p = 4 in the first layer, and
p = 2 in the second layer. This is in accordance with our experience of
resolving PML induced boundary layers with hp-adaptive elements, see [9]
for examples.

B.1 Generation of tetrahedral meshes

We choose an octree-based isocontouring method [16] to extract interior and
exterior tetrahedral meshes for the acoustic and elastic domains. First we
define the analysis domains and construct a signed distance map. Then
a top-down octree subdivision coupled with the dual contouring method
is used to rapidly extract adaptive 3D finite element meshes with correct
topology from the signed distance map. Finally, the edge contraction and
smoothing methods are used to improve the mesh quality. This octree-
based technique extends the dual contouring method to crack-free interval
volume 3D meshing with feature sensitive adaptation. Compared to other
tetrahedral extraction methods from imaging data, this method generates
adaptive and quality 3D meshes without introducing any hanging nodes.

At the end, the following files are created:
2 This is essential, among other reasons, from the point of view of using a direct solver.
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"* sphere-file - contains a list of vertices and triangles on the truncating
sphere,

"* tissue-skull-file - contains a list of vertices and triangles on the tis-
sue/skull interface,

"* air-skull-file - contains a list of vertices and triangles on the air/skull
interface,

"* cochlea-air-file - contains a list of vertices and triangles on the cochlea/air
interface,

"* cochlea-file - contains a list of vertices and tetrahedra within the cochlea,

"* air-file - contains a list of vertices and tetrahedra within air,

"* skull-file - contains a list of vertices and tetrahedra within skull,

"* tissue-file - contains a list of vertices and tetrahedra within tissue

The meshes are fully compatible, i.e. for instance all vertices for the skull
tetrahedra, that are located on the skull/air interface, coicide with vertices
listed in air.skull-file.

B.2 Data structure and element computations

An existing data structure for higher order hexahedral elements, see [3, 4],
has been extended to the case of tetrahedral and prismatic elements. The
data structure arrays are initiated with a relevant information on nodal
connectivities, and element neighbors necessary for element computations.

Element matrices corresponding to bilinear forms are integrated using
standard Gaussian quadrature for tetrahedra (volume integrals) and trian-
gles (interface terms).

B.3 Solvers

Three linear solvers are used in this project. The first one is a serial frontal
solver developed at ICES3 , the second one is the European MUMPS, see
[10], and the third one is a new, parallel solver enabling solution of large
systems of equations with several milions of unknowns, developed especially
for this project. Preliminary details on the solver are given in Section C. The

3 The solver was developed by Dr. Eric Becker, a professor in the ASE/EM Dept. and
a long time member of TICOM, next TICAM and now ICES
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interfaces with the first two solvers have been implemented for the purpose
of verification.

B.4 Graphics

To visualize our models, meshes and solutions, we have implemented a simple
interface to the Visualization Toolkit (VTK) [11], a collection of C++ classes
that implement a wide range of visualization algorithms. The central data
structure for this project is the vtkUnstructuredGrid, which represents
volumetric data as a collection of points with corresponding scalar values
(in this case, the real and imaginary part of the pressure), connected by
cells of arbitrary type and dimension (i.e. lines, triangles, quads, tetrahedra,
prisms, etc.). This data is then plugged into a variety of filters that allow
us to, for example, "slice" through the dataset with a plane to see the
pressure in the interior, extract colored isocontours or isosurfaces of the
pressure, or generate an animation of the time-dependent pressure P(x, t) =

Re (eiwtp(x)).

C Parallel Linear Solver

The nested-dissections parallel multi-frontal solver is utilized to solve the
problem over large meshes. The frontal solver is an extension of the Gaus-
sian elimination, where assembly and elimination are performed together on
the so-called frontal sub-matrix of the global matrix [7]. The multi-frontal
solver utilizes domain decomposition pattern to work with multiple frontal

matrices.
An example of the computational domain related to the head problem,

partitioned into 3 sub-domains is presented in Fig. 20. Local orderings
of degrees of freedom (d.o.f.) are computed on each sub-domain, where
internal d.o.f. are numbered first, and interface d.o.f. are put at the end.
Local matrices contain internal d.o.f. interactions part Ai, interface d.o.f.
interaction part A' and the interface-internal d.o.f. interaction parts Bi, Ci.EA B [ (C.1)

C, A [ xi [i

The global matrix is a sum of local matrices

d

A = • PiAiPT. (C.2)
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Figure 20: Computational mesh partitioned into 3 sub-domains.

The global numbering of d.o.f. is created in the following way:

"* All internal d.o.f. from 1-st sub-domain,

"* All internal d.o.f. from 2-nd sub-domain,

* All internal d.o.f. from d-th sub-domain,

o All d.o.f. from the global interface.

The maps Pi are constructed to transfer ordering from local to global. Going
into details, let n = denotrs total number of d.o.f.,

n(i)

internal number of interior d.o.f, of sub-domain i.

interface = number of interface d.o.f. of sub-domain i.
ninterface = global number of interface d.o.f..
We define the Pi maps in the following way:

Pi:M n.iP internal + "interface x "internal + ilinterface) , M (n x n) (C.3)

M () x(i) - M () X() face (C.4)

: M interface X internal) interface X inter
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Figure 21: Forward elimination is stopped before processing fake elements.
Sub-domain internal nodes are eliminated.

Pi (i) •(i) • / ()•• C5
PbM tinternal X "interface) M i niner)c x in(t)e)rfCe)

Pbb :M (niner) c X nl~inteface) - M (ninterface X 71interface) (C. 6)

Since

0 Xl1
... X2

PiAiP[ Ai PibBiPT . (C.7)

• .. Xd
PbiCi Pb PbbA'Pb• X1

the structure of the global stiffness matrix is

Al .. PlbBI PT Xl 1blr
A2 PlbB2p• X2 P20b2P•b

Ad PdbBdPdb Xd PdbbdPdb

L Lull~ibsj~

Pbl ClPbT Pb2C2 PbT2 .. PbdCdPbT i-=d1 PbbA'PbTb xs IPibP

(C.8)
In the 3D code we utilize a serial version of the MUMPS solver [10]

over each sub-domain. Single processor versions of MUMPS ade executed
on each processor for each sub-domain. The MUMPS is executed to provide
the Schur complement of the local sub-domain matrix. The internal sub-
domain d.o.fM are eliminated with respect to the interface sub-domain d.o.f.

The Schur complement of the local system (C.1) for sub-domain i is

AiA' = Pb (C.9)

37



FN-

Figure 22: Global interface problem can be aggregated by summing up local
Schur complements.

Ai =A - CiA:'BT (C.10)

bi b' - CiA-'bi (C.11)

A practical way of obtaining the Schur complement is to order d.o.f. in
such a way that interface d.o.f. are numbered at the end, and than to execute
forward elimination for the internal d.o.f. [13]. The forward elimination is
stopped before processing interface d.o.f. After eliminating local internal
nodes, the local matrices look like it is presented in Fig. 21 and in (C.12).

[j 11Bj [b (C. 12)

Once local Schur complements are computed, we can formulate and solve
the global interface problem. The Schur complement matrices can be sent
to separate process, the global interface problem matrix can be obtained by
summing up the local interface matrices, see Fig.22.

Ai = b (C.13)

d

A PiA,*pT (C.14)
i=1

d

b= Pb'p (C.15)

The global interface problem can be solved, by utilizing sequential version
of MUMPS, see Fig. 23

=b--*i = L-16 (C.16)
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Figure 23: Global interface problem is solved.

r ~*

F I: N.

Figure 24: Solution of the global interface problem can be broadcasted into
sub-domains.

and the solution can be broadcast into all sub-domains, see Fig. 24. The
part of the solution corresponding to local interface node is substituted to
the right-hand-side, the identity matrix is put into the right-bottom part of
the local matrix

[U, B~ i [ x,] Ei U
o Aq* xJ b* 0 1 x [ pb

(C.17)
and the backward substitution is executed on sub-domains.

Summing up the presented scheme, to solve the problem distributed into
sub-domains, we need to formulate and solve the interface problem first.

For large 3D problems, or for multiple sub-domains, the interface prob-
lem is large, its matrix is dense. This motivated us to utilize the idea
of nested dissections to reduce computational cost of the interface problem
solution. The idea of the nested dissection solver is to utilize the Schur com-
plement pattern recursively. This can be described in the following steps,
compare Figure 25.

e In the first step, local internal sub-domain d.o.f. are eliminated with
respect to local interface sub-domain d.o.f., in the same way as it is
described above.

* Processors are joined into pairs, partial interface matrices are aggre-
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(1) (2) (3) (6) (5) (4)

Figure 25: Partial Schur complements (1-2-3) followed by backward substi-
tutions (4-5-6) executed over the nested dissections scheme.

gated for each pair of processors. Common interface d.o.f. are elim-
inated with respect to external interface d.o.f. within each pair of
processors. Notice that this procedure requires to build new inter-
face node numbering within each pair of processors. This is the main
technical difficulty in implementing the nested dissection scheme.

" The procedure from the previous step is repeated recursively as long
as there are common pieces of interface to be eliminated.

" In the last step of the elimination, there is only one piece of aggregated
interface d.o.f. matrix, the common interface part. This interface
problem matrix is much smaller, since it corresponds to common part
of the interface between two groups of processors. In general, when
the domain is not cylindrical, this interface part is associated with
the cross-section of the domain. This interface problem can be solved
now, since it is much cheaper then the global interface problem in the
previous scheme.

" The solution of the common interface part is broadcast back into two
group of processors, local solution extracted by using built maps are
substituted into Schur complement matrices from current nested dis-
sections step, and the backward substitution is executed to get next
contribution to the global interface problem solution.

" The procedure is repeated until we end up with the complete solution

of the global interface problem.
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Figure 26: Real part of the solution on the simplified model, obtained by
parallel execution on 5 processors.

Figure 27: Imaginary part of the solution on the simplified model, obtained
by parallel execution on 5 processors.

* In the last step, the backward substitution is executed over sub-domains
and the problem is finally solved.

The presented strategy can be easily generalized to the number of processor
not equal to the power of 2. The exemplary solution on the simplified model
of human head build by concentric spheres is presented in Figures 26 and
27. Because of material data assumed, the maximum solution values are
obtained on the skull, compare 28.

The current version of the nested dissection parallel multi-frontal solver
attains relative efficiency up to 60 percent.
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Figure 28: Solution on the central sub-domain, top view.
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